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There is accumulating evidence that spontaneous fluctuations of the brain are sustained 

by a structural architecture of axonal fiber bundles. Various models have been employed 

to investigate this structure-function relationship. In this work, we implemented the Ising 

model using the number of fibers between each pair of brain regions as input. The output 

of the Ising model simulations on a structural connectome was then compared with 

empirical functional connectivity data. A simpler 2-dimensional classical Ising model was 

used as the baseline model for comparison purpose. Thermodynamic properties, such as 

the magnetic susceptibility and the specific heat, illustrated a phase transition from an 

ordered phase to a disordered phase at the critical temperature. Despite the differences 

between the two models, the lattice Ising model and the Ising model implemented on a 

structural connectome (the generalized Ising model) exhibited similar patterns of the 

global properties. To study the behavior of the generalized Ising model around criticality, 

calculation of the dimensionality and critical exponents was performed for the first time, 

by introducing a new concept of distance based on structural connectivity. Same value 

inside the fitting error was found for the dimensionality in both models suggesting similar 

behavior of the models around criticality.  
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I. Introduction 

The relationship between the spontaneous activity of the brain and its structural fiber 

distribution is a critical topic in neuroscience. This relationship will allow us to better 

understand the emergence of complex but flexible dynamics (brain functions) in the brain 

from its underlying structural network. The structure-function relationship is commonly 

investigated using two main approaches. First, statistical methods directly compare resting 

state functional connectivity patterns with the structure. Statistical comparisons lead to 

important results indicating the presence of a significant correlation between the 

anatomical fiber distribution and the functional connectivity patterns (Barttfeld et al, 2015, 

Van Den et al., 2010, Li´egeois R et al., 2015). The other common approach to understand 

the structure-function relationship of the brain is by using simple mathematical models 

that could capture the complex dynamics of the brain. 

There are several models which have been used to discuss the spontaneous behavior of 

the brain, including the Neural mass model, the Kuramoto model, and the well-known 2-

dimentional (2D) classical Ising model. The Neural mass model and the Kuramoto model 

have been successful in providing evidence for the existence of a connection between the 

anatomical structure and the spontaneous fluctuations of the brain as captured by fMRI 

(David et al., 2004, Honey et al., 2009, Acebro´n et al., 2005, Breakspear et al., 2010, Deco 

et al., 2009). 

The classical Ising model was developed by Ernest Ising (Brush, 1967) to explain the phase 

transition to ferromagnetic behavior at a critical temperature. It has been used to 

investigate brain dynamics by (Fraiman et al., 2009). The classical Ising model is a relatively 

simple model with only one fitting parameter, the temperature of the thermal bath, in 

which a lattice simulating the regions of a ferromagnet is immersed. Yet, by virtue of its 

simplicity it has been able to capture the integration and segregation behavior of 

spontaneous brain function (Fraiman et al., 2009) (for more details of the 2D classical Ising 

model see APPENDIX A). Blood Oxygen Level Dependent (BOLD) signal is the signal fMRI 

methods are sensitive to and are a convolved property of neuronal fluctuations in the 

brain. It is modelled with the Ising model using binary spin states. BOLD signals greater 

than a threshold will be represented by up spins and less than the threshold will be 
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represented by down spins with the lattice sites counting the number of brain regions. 

With this analogy, the 2D classical Ising model was first used by Fraiman to predict the 

distribution of functional correlations in the brain.  They found that the best prediction of 

the distribution of correlations was obtained from the model at the critical temperature 

while important deviations were observed for even small changes in temperature from 

criticality. Successful results of these comparisons have led to further investigations of the 

model to explain the structure-function relationship of the brain.  

In a subsequent work, the 2D classical Ising model was generalized by Marinazzo et al., 

(Marinazzo et al., 2013) by implementing the model on the structural connectome, in 

order to match each region of the brain with a corresponding lattice site. Criticality was 

confirmed for the generalized model and an information transfer was found to be 

maximum at the critical temperature as well. The generalized Ising model was further 

studied by Stramaglia et al. by comparing correlation values and transfer entropy between 

simulated and functional empirical data (Stramaglia et al., 2017). Furthermore, Deco et al. 

studied an Ising model implemented on the structural connectome and compared with the 

implementations of the model on artificially created connectomes with differnet coupling 

strengths (Deco et al., 2012). They investigated the entropy of the systems as a function of 

the coupling strength to conclude that the simulated system exhibits rich dynamics similar 

to the empirical functional connectivity when the structure is integrated as a scale-free 

network. 

 In this paper we compared the classical Ising model and the Ising model implemented on 

the structural connectome with respect to the empirical data demonstrating that both 

models exhibit similar functional patterns and global properties despite the intrinsic 

differences. If both models are in the same universality class (same critical exponents), 

then their similarity would not be surprising. To investigate the cause of their similarities, 

the critical exponents (explained below as well as in APPENDIX B) of both models were 

calculated and compared (Landau et al., 2014). If we know the critical exponents of one 

system in a particular universality class, we can explain any other system in the same 

universality class, whose microscopic causes could be totally different from the known 

system. The critical exponents are said to explain the behavior of the system around the 



Page 4 of 36 
 
 
 

4 

Br
ai

n 
Co

nn
ec

tiv
ity

 
Ro

le
 o

f D
im

en
sio

na
lit

y 
in

 P
re

di
ct

in
g 

th
e 

Sp
on

ta
ne

ou
s B

eh
av

io
ur

 o
f t

he
 B

ra
in

 u
sin

g 
th

e 
Cl

as
sic

al
 Is

in
g 

M
od

el
 a

nd
 th

e 
Isi

ng
 M

od
el

 Im
pl

em
en

te
d 

on
 th

e 
St

ru
ct

ur
al

 C
on

ne
ct

om
e 

 (D
OI

: 1
0.

10
89

/b
ra

in
.2

01
7.

05
16

) 
Th

is 
pa

pe
r h

as
 b

ee
n 

pe
er

-re
vi

ew
ed

 a
nd

 a
cc

ep
te

d 
fo

r p
ub

lic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 co

py
ed

iti
ng

 a
nd

 p
ro

of
 co

rr
ec

tio
n.

 T
he

 fi
na

l p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

iff
er

 fr
om

 th
is 

pr
oo

f. 

critical temperature. Greek letters, β, γ, α, η and ν are used to represent the critical 

exponents of magnetizations, susceptibility, specific heat, correlation function (Expert, P. 

et al., 2011) and correlation length (Fraiman, D. et al., 2012) respectively. These critical 

exponents together with the dimensionality d follow the scaling relations explained in 

APPENDIX B.  

Dimensionality, together with the other critical exponents, is fundamental to understand 

the behavior of the system around criticality. Physiological changes of the brain, as for 

example induced by sleep, could be infact explained by the model deviating from 

criticality.  Dimensionality of a system has been found to be highly relevant for the system 

perfomance also in neural networks (Severino et al., 2016). In their paper, they have 

concluded that different dynamics can be observed in neural networks with different 

connectivity patterns coming from different dimensionalities.  

For the classical Ising model the dimensionality of the system is given by the number of 

dimensions of the lattice (d = 2 for a square lattice) and there is a well-defined relationship 

between the number of nearest neighbors in the lattice and the dimensionality (number of 

nearest neighbors = 2*dimensionality). However, for the generalized Ising model the 

dimensionality of the system is not evident as for the classical case and in order to be 

extracted a new concept of distance needed to be introduced.  

 

The key components of the steps carried out are summarized in Fig. 1. The organization of 

the paper is as follows. In the next section, we will introduce the methodology of 

calculating and comparing properties of the empirical functional connectivity with the 

ones generated from the numerical simulations of the classical Ising model and the 

generalized Ising model. Then we will explain the procedure we followed to calculate the 

critical exponents and the dimensionality of the models. Next, we will explain the main 

findings of the work that was carried out, which will be followed by discussion and 

conclusions. 
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II. Materials and Methods 

A. Acquisition & Preprocessing of Data 

1. Subjects 

A set of sixty-six healthy subjects, between 22 – 35 years old, were studied during 

wakefulness. Informed consent to participate in the study was obtained from every 

subject. 

2. Ethics Statement 

The Ethics Committee of the Washington University and the University of Minnesota 

approved the study. 

3. Acquisition & Preprocessing of Data 

Structural and functional data were acquired at the Washington University - University of 

Minnesota Consortium of the Human Connectome Project (WU-Minn HCP). Details about 

the data acquisition and preprocessing can be found here (Glasser, Mathew F. et al.,2013, 

Jenkinson, Mark, et al. , 2012, Fischl B. 2012, Jenkinson M et al., 2002, Glasser MF et al., 

2011, Van Essen DC et al., 2012, Andersson JL et al., 2003, Andersson JL et al., 2015, 

Andersson JL et al., 2015). Parcellation of the data was performed, using FSL, Freesurfer 

and MRTrix software with 84 individually labeled regions (list of the labels are presented in 

APPENDIX C). Extraction of the structural connectivity matrix (Jij) was performed using the 

MRTrix software.   

B. 2D Ising model and the Generalized Ising Model 

1. Computer Simulations: 

An instance of the 2D Ising model is built starting with a random spin configuration on a 

square lattice of size L x L (= 9 × 9) which is in contact with a thermal bath of temperature 

T. For comparison purposes, a square lattice Ising model with a 9 × 9 lattice size was 

chosen, as it gives 81 spin sites (that is the closest number of sites to 84 we can acquire 

using a square lattice). For the generalized Ising model, a 1 × 84 array of random spins was 

used. Each spin can be in only one of two spin states (either up (+1) or down (-1)). The 

energy of this spin configuration, in the absence of an external magnetic field is given by; =  − ∑    ,       (I) 
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where Jij is the coupling between ith and jth region, si and sj represent the spins of the ith and 

jth region respectively and N = L x L. A matrix representing the coupling Jij for the 2D Ising 

model has been created to encode nearest neighbor coupling with a coupling strength of 

one (Fraiman et al., 2009). In contrast, another matrix representation of coupling Jij for the 

generalized Ising model has been created using the connectivity matrix which was built 

from the Diffusion Tensor Image (DTI) acquisition. This matrix contains the number of fiber 

tracts between each pair of region in the connectome which is being used to define the 

coupling strength. For the simulations of the model we normalized the average structural 

connectivity matrix (average over 66 subjects) such that the matrix elements will be 

between 0 and 1.  

A Metropolis Monte Carlo algorithm (Metropolis et al., 1953, Gould et al., 1988) was used 

to simulate the system at each temperature. Metropolis Monte Carlo algorithm allows to 

generate an equilibrium spin configuration starting from a random spin configuration for 

each temperature (more details can be found in APPENDIX A). From the final output of the 

simulations, the correlation between the time evolutions of spins for each temperature 

was calculated using Eq. II,  

=  ( )  ( )   ( ) ( )( )  ( )       (II) 

where si and sj stands for the spins of ith and jth regions,   < s2
i(t) > − < si(i) >2 and < . > 

is for the average over time.  

Using this procedure, the correlations were generated by each model as a function of 

temperature. Afterwards, this procedure was repeated for both models to generate ten 

sets of data for each, always starting with a random spin configuration. Generating ten 

independent simulations further ensures that the Metropolis algorithm explores a variety 

of initial conditions and therefore increases the (statistical) accuracy of the results. 

MATLAB (https://www.mathworks.com/) was used for the computer simulations and 

analysis whereas RStudio (https://www.rstudio.com/) was used to generate graphs.   
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C. Analysis 

1. Preliminary Analysis 

Analysis was performed over the average of ten data sets for both models. The 

thermodynamic properties were plotted as functions of temperature for the two models 

to obtain the critical temperature (Fig. 2). 

The critical temperature can be obtained by locating the temperature which maximizes the 

magnetic susceptibility of the system (Eq. III where  is the magnetic susceptibility, T is the 

temperature and M is the magnetization) (Landau et al., 2014).  

= [< 2> - < >2]                                                  (III) 
The empirical functional correlation matrix which is built by averaging the correlation 

matrices across the 66 healthy subjects was compared with the simulated correlation 

matrices (Fig. 3) for further analysis. Additionally, the distribution of the correlation for the 

simulated data as well as for the empirical data was plotted in Fig. 4.  

Next, the distance between the simulated correlation distributions and the empirical 

correlation distribution was calculated as a function of temperature and presented in 

APPENDIX D - I. The distance between the empirical and simulated correlation 

distributions is quantified using the Kolmogrove-Smirnov test (KS test) statistic (Massey Jr 

et al., 1951).  To calculate the KS test statistic, empirical and the simulated correlations 

were plotted as cumulative plots in the same graph. Next, the maximum distance between 

these two plots was calculated. Temperatures which minimize this maximum distance 

(Tmin) has been obtained for individual simulations. Distribution of Tmin and Tc for the 

generalized Ising model is presented in Fig. 5. 

In order to calculate the global degree as a function of threshold, correlations were 

separated into positive and negative correlations. Then the global degree was calculated 

for the negative and positive thresholds separately for the 2D classical Ising model and the 

generalized Ising model and plotted in Fig. 6 together with the global degree of the 

empirical data (Rubinov et al., 2010). Taking the individual node degree into consideration, 
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connectivity graphs are plotted for the generalized Ising model at four different 

temperatures and been compared with the graph of the empirical data (Fig. 7) 

     2. Analyzing the behavior at the criticality using the critical exponents 

The critical exponents and the dimensionality were calculated for the two models by 

following the procedure below. First, the critical exponents related to magnetization, 

susceptibility and specific heat were calculated by fitting Eq. 1- 5 (in APPENDIX B) to the 

respective plots in Fig. 2. To find η and ν, following procedure was used:  

Correlation function: First, a set of distances for both models were defined using the 

respective connectivity matrices. For the classical Ising model, the distances were the 

integers from 1 to 8, since the initial configuration was a 9 x 9 2D lattice. However, for the 

generalized Ising model the distance between two regions is defined as the reciprocal of 

the normalized number of fibers between the two regions (dij = 1/Jij). We binned the 

continuous distances to create a set of discrete groups. Then the correlation values 

between pairs at the same distance were averaged to get the average correlation as a 

function of distance. This calculation was performed for each temperature (Fig. 8). By 

fitting Eq. 8 (APPENDIX B) to the plot of correlation function versus the distance at the 

critical temperature, η was calculated. By subsequently using Eq. 7 to fit the correlation 

function at the critical temperature, a numerical value for the power of the denominator 

(= d- 2+ η) was then obtained. Using this fitted value and the calculated η at Tc the 

dimensionality of the classical Ising model as well as the generalized Ising model was finally 

extracted. 

Correlation length: Correlation length at each temperature was calculated by fitting Eq. 6 

(APPENDIX B) to the correlation function versus the distance at each temperature.  The 

correlation length was plotted as a function of temperature and fitted with Eq. 9 and 10 

(APPENDIX B) to find ν (Fig. 8).  

III. Results 

1. Preliminary Analysis 

The mean values of critical, sub-critical and super critical temperatures over the ten 

independent trials were obtained using the susceptibility plots in Fig. 2 and are reported in 
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Table I together with their standard deviations. The critical temperature value of the 2D 

Ising model agree with the critical temperature described in (Witthauer et al., 2007) for 

the lattice size L = 9. In the generalized Ising model, the phase transition occurs at a lower 

temperature than that of the classical Ising model. Correlations for four different 

temperatures are presented in Fig. 3. At Tc the spatial pattern of the correlations in the 

generalized Ising model hold a similar spatial pattern to that of the empirical data. 

Distributions of the correlations for the selected four temperatures are plotted in Fig. 4 

along with the empirical data. For the classical Ising model correlation distributions 

showed difference between the empirical distribution and the simulated one at criticality, 

even if the critical temperature Tc  or the slightly different value Tmin gave a much better 

prediction with respect to sub or supercritical behavior. For the generalized Ising model 

the distribution of correlations at Tc and Tmin  and the distribution of correlations for the 

empirical data were not signifantly different (p = 0.98) while the distributions at sub and 

supercritical temperatures were quite distant from the empirical distribution.   

According to Fig. 5, the variation of Tc (and Tmin) is resulted due to the randomness of the 

initial spin configuration in the simulations. To illustrate the inter-subject variance of Tc 

(and Tmin), distributions of Tc (and Tmin) are presented in APENDIX D - (II). A two sample t-

test was performed to compare the Tmin values with the Tc values in individual simulations. 

Results of the t-test together with Fig. 5 concluded that Tmin and Tc are significantly 

different for the generalized Ising model (p <0.001) but not significantly different for the 

2D Ising model (with p = 0.4).  

Graph Theoretical Analysis 

In Fig. 6, the global degree of the graphs was plotted as a function of negative and positive 

thresholds for both models. As observed in Fig. 4 there are no negative correlations at Tc or 

at Tmin for the classical Ising model. Therefore, in Fig. 6 the degree cannot be plotted for 

the negative thresholds at Tc and at Tmin for the classical Ising model.  Fig. 7 represents the 

functional connectivity graphs for the data obtained from the generalized Ising model 

simulations at sub-critical, critical, super-critical temperatures and Tmin along with the 

connectivity graph of the empirical data. In these graphs, each point represents a brain 
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region. It is evident that the connectivity in the network grows as the temperature goes 

from T < Tc to Tc and again reduced from Tc to T > Tc, and shows similar patterns for Tc and 

Tmin. 

Analyzing the behavior at the criticality using the critical exponents 

Fig. 8 represents the correlation function and the correlation length plotted for the two 

models. These two plots were used to find the critical exponent η and the dimensionality 

‘d’ of the models. The calculation of dimensionality for the classical Ising model confirmed 

the expected value of  2 (since we chose the square lattice Ising model in two dimensions) 

giving the value of 1.93 ± 0.59. The dimensionality of the generalized Ising model was 

calculated for the first time giving a value of 1.92 ± 0.12 and proven equal to the classical 

Ising model value inside the fitting error. All the other critical exponents are reported in 

Table II together with the dimensionality for both models.  

IV. Discussion 

The square lattice Ising model has been used in neuroscience to study brain functionality. 

Fraiman et al. showed that the distribution of correlations at Tc in the 2D classical Ising 

model has noticeable similarities to the distribution of correlations of the empirical data, 

even in the absence of information from the structural architecture of the brain (Fraiman 

et al., 2009). Their conclusion together with several other studies supported the 

assumption of the presence of critical behavior in the brain network (Marinazzo et al., 

2013, Stramaglia et al., 2017, Deco et al., 2012).   

In this paper, as the first step we compared simulations of a 2D Ising model with those of 

the generalized Ising model by looking at the distibutions of correlation values. The fact 

that for both models the mean of the correlation distribution values at the critical 

temperature is larger than the mean of the correlation distribution at sub-critical or super-

critical temperatures is a well known prediction of the Ising model in the classical version 

and was confirmed by our results for the generalized model. Correlation between the ith  

and the jth regions can be calculated using Eq. (IV) (where rij is the distance between region 

i and j ,  is the correlation length, d is the dimensionality and  is the critical exponent of 

the correlation function), and is clearly shown from Fig. 8. 
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=   ( )                                                            (IV) 

At the critical temperature, because the correlation length () goes to infinity (in the 

infinite lattice size limit), the correlation will have a power low decay with the distance. On 

the contrary, at any other temperature,  will be finite and the correlation will have a 

combined exponential and power low decay. Therefore, outside of criticality correlation 

will drop faster with distance resulting in a lower average correlation value. For finite 

lattice size the difference between the mean of the distribution at criticality and outside 

criticality will be reduced with respect to the infinite lattice size limit.  

In the generalized Ising model, the introduction of the coupling from the structural 

connectivity of the brain provided a one to one relationship between the brain regions and 

the lattice sites. Each lattice site was connected with every other site with a given weight 

which was obtained from DTI as opposed to the 2D classical Ising model. One objective was 

to investigate behavior at the critical temperature with respect to these changes in the 

model. When the structure is introduced, we observed a shift in the critical temperature 

from 2.5 to 1.4. An illustration of this change as a function of sparsity of the structural 

connectivity matrix is presented in APPENDIX D – (III). We can conclude that the critical 

temperature depends not only on the size of the matrix  but also on the sparsity of the 

connectivity matrix.  

The temperature which minimizes the distance between the distributions of correlation 

(Tmin) was significantly different from Tc for the generalized Ising model but not for the 2D 

classical Ising model. Global degree plotted as a function of the temperature (APPENDIX D 

– (IV)) was maximized at a temperature which is not different from Tmin.  This fact suggests 

the usage of graph properties to extract Tmin of the Ising model, either in the classical or 

generalized version as done by looking for the maximum of  susceptibility. Fig. 9 represents 

the possibility of finding a relationship between the graph properties and the 

thermodynamic properties of the Ising model. As the theory implies, the specific heat and 

the susceptibility measure the variation of energy and magnetization with temperature 

respectively. This was captured by calculating the cumulative integral of the specific heat 

and susceptibility of the generalized Ising model. Following the same procedure, the 
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cumulative integral of the global degree was calculated, which resulted in the plot on the 

right-hand corner in the top panel of Fig. 9. The new plotted quantity follows a similar 

behavior as the energy with temperature and could be linked to a fundamental property of 

graph theory.  

Similar properties around criticality for both models justified the use of the same fitting 

functions, even if we needed to introduce a concept of distance for the generalized version 

in order to extract the correlation length. In fact as shown in Fig. 8 the behavior of the 

correlation vs distance for the generalized Ising model is well fitted by the same function as 

the classical model. 

Having the same dimensionality can explain the observed similarities in global behavior of 

the two Ising models around the critical temperature such as the correlation values and 

global degree. Studying the behavior around criticality for complex systems like the Ising 

model which shows a phase transition, could be extremely important and performed with 

a similar strategy as the one followed in this paper by introducing an artificial concept of 

distance.  

As the critical exponents (in Table II) are different for the two models, it cannot be 

concluded that these models belong to the same universality class. The fact that the global 

properties of the models still followed a similar pattern is due to the fact that our 

calculated properties all depend on the correlation values which are controlled by the 

dimensionality d (equal in the two models) and the critical exponent  (0.34 for classical 

and 0.46 for generalized) (APPENDIX B, Eq. 6).  

Our findings for the genarlized ising model could be of relevance to study for example the 

brain function of patients who suffer severe brain injury with disorders of consciousness in 

which usually both structural and functional connectivity are highly affected. Furthermore, 

for future studies, it will be highly relevant to see how the properties of the generalized 

Ising model change with respect to the size of the lattice. This would mean using different 

parcellation schemes, different size of the system, which is contrary to the classical ising 

model will also result in the change of the structural connectivity matrix (Jij) that will 

depend on the parcellation scheme used. 
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V. Conclusion 

Extending the 2D classical Ising model towards the generalized Ising model further permits 

to fit the empirical functional connectivity patterns. The introduction of structural data 

from the brain as an input into the Ising model gives the best fit to functional data at Tmin 

which is significantly different from Tc in the direction of the subcritical regime but not far 

from criticality. Since the critical exponents of the models are different it cannot be 

concluded that these two models belong to the same universality class. However, 

similarities observed in the global properties between the two models can be explained by 

the fact that they have the same dimensionality. Studying the behavior of the system 

around criticality could be used to better  understand changes in spontaneous brain 

activity from the awake condition as observed in physiological states like sleep or as in 

pharmacologically induced conditions like under anesthetics.  
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TABLE I. Sub-critical, critical, super-critical temperatures and Tmin of the generalized Ising 

model and the 2D classical Ising model 

Model T < Tc T = Tmin T  = Tc T > Tc 

Generalized 

Ising model 
0.78 ± 0.02 1.21 ± 0.04 1.39 ± 0.02 1.98 ± 0.02 

Classical Ising 

model 
1.55 ± 0.10 2.53 ± 0.20 2.55 ± 0.10 3.55 ± 0.10 
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TABLE II. Critical exponents and the dimensionality of the 2D classical Ising model and the 

generalized Ising model 

Critical exponent 2D Classical 

Ising model 

Generalized 

Ising model 

α (Specific heat) 1.49 ± 0.02 0.81 ± 0.01 

β (Magnetization) 0.14 ± 0.01 0.21 ± 0.01 

γ (Susceptibility) 0.61 ± 0.01 0.53 ± 0.01 

η (Correlation function) 0.34 ± 0.01 0.46 ± 0.01 

ν (Correlation length) 0.30 ± 0.01 0.63 ± 0.02 

d (Dimensionality) 1.93 ± 0.59 1.92 ± 0.12 
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FIG. 1. Summarized representation of the analysis carried out. We obtained the structural 

and functional data separately from brain imaging techniques. Then, the structural 

connectivity was used as the input of the generalized Ising model. Using this input, the 

generalized Ising model was simulated for different temperatures and each time the 

output was compared with the empirical functional data obtained from fMRI 
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FIG. 2. Thermodynamic properties of the 2D classical Ising model with 9 × 9 lattice size and 

the generalized Ising model as a function of temperature. Red dashed line indicates the 

critical temperature and the red solid lines represents the plots after fitting the given 

equations to calculate the critical exponents. 
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FIG. 3. Correlation at four different temperatures for the classical Ising model and the 

generalized Ising model with the correlation of the empirical data.  
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FIG. 4. Distribution of the correlation at four different temperatures for the classical Ising 

model and the generalized Ising model with the distribution of correlation of the empirical 

data.  
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FIG. 5. Histogram of Tc and Tmin together with the fitted distributions for the generalized 

Ising model in ten independent simulations 
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FIG. 6. Average degree as a function of positive and negative thresholds for the classical 

Ising model and the Generalized Ising model together with the average degree of the 

empirical correlation network.  
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FIG 7. Connectivity graphs for the generalized Ising model for four temperatures, and the 

connectivity graph of the empirical network. The size of the nodes represents the degree 

such that larger the size, higher the degree. 
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FIG. 8. Correlation function versus distance and correlation length versus temperature for 

the 2D classical Ising model and the generalized Ising model. Red solid line represents plots 

after fitting the given equations (APPENDIX B). In the top panel, the dashed line represents 

the correlation function at the critical temperature.   
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FIG. 9. Energy, Specific Heat, Magnetization, Susceptibility, Degree and the cumulative 

degree of (a) the generalized Ising model, (b) the 2D classical Ising model as a function of 

temperature. 
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APPENDIX 

APPENDIX A: 2D CLASSICAL ISING MODEL 
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APPENDIX C: LABLES OF 84 PARCELLATIONS OF THE BRAIN 
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APPENDIX D: DISTANCE CALCULATIONS, FURTHER STUDY OF THE DIFFERENCE IN Tc AND 

ADDITIONAL FIGURES 
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